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Abstract

A new theory of scattering by periodic metal sur-
faces is presented. The approach reduces the scatter
problem to solving a linear system whose coefficients
are obtained in closed form. The theory is thus amena-
ble to efficient computer evaluation. Numerical re-
sults have shown that for depth of grooves less than a
wavelength and for unrestricted groove widths reliable
and comparable, if not more accurate, data is obtained
at minimal computational cost.

Introduction

Many of the procedures used to study scattering
from periodic surfaces are based on the original ap-
proach used by Lord Rayleigh in 1878,l in which a
discrete spectrum of outgoing plane waves is assumed
for the scattered field. Difficulties occur in apply-
ing boundary conditions since this form of the
scattered field does not in general apply at the
scatter surface.“’” Only recently, with the availabil-
ity of high speed computers, has the evaluation of
rigorous integral representations of solutions to these
problems become practical and reliable results been
obtained.™ ® In this study, a new theoretical approach
to the problem of scattering by periodically corrugated
metal surfaces is presented. The induced current dis-
tribution on the perfectly conducting surface is
assumed to be a Fourier series (whose fundamental
spatial period is equal to the width of the surface
grooves - Floquet's theorem) multiplied by the physical
optics current density or a suitably chosen modifica-
tion of it. The unknown coefficients of the Fourier
series are determined from the condition that the total
field below the scatterer be zero. This method con-
verts the solution of the scatter problem, for many
periodic configuration, to the solution of a linear
system whose matrix coefficients reduce to closed form
expressions in terms of well-known functions. The
unknown Fourier coefficients become amenable to effi-
cient computer evaluation after appropriate truncation
of the linear system. With the known induced current
distribution, closed form expressions are then obtained
for the scattered field above the metal surface. By
increasing the order of the system evaluated, it should
in principle be possible to improve the accuracy of the
approach without limit (though this has not yet been
proven).

Experimentally, it has been established that TM-
polarization is superior to TE-polarization in mini-
mizing false guidance of microwave scanning beam
landing systems by substantially reducing specular
reflection from large (periodic) metal structures near
runways.9 TE(TM)-polarization is characterized by an
electric (magnetic) field directed parallel to the
surface grooves. Numerical results confirm this exper-
imental evidence, particularly in the practical range
of low incidence angles (near grazing).

Conservation of power and reciprocity are used to
numerically test the accuracy of this new theory. Its
dependence on surface groove depth and width is dis-
cussed. Finally, comparisons are made of data

obtained by this method with results based on the
numerical schemes of Tong and Senior,® and of Zaki and
Neureuther.™?

Scatter Problem and Solution

A uniform plane wave (with suppressed time de-
pendence exp(iwt) is incident at an angle 6 upon a
metal sinusoidally varying surface defined by
z, = h sin(2ﬂxo/d), “®SX, YL (see Fig, 1).

INCIDENT
WAVE

X

Fig. 1. Sinusoidal metal surface illuminated by plane
wave; coordinates and geometry of scatter
problem.

Due to the periodic nature of the surface, the scatter
field in the region z>z  can be represented as a dis-

crete spectrum of propagating and evanescent plane
waves (space harmonics):
-ik(x sin6n+z cosen)

q_ F ¢4 d_s 7o
vi- 5 ule , U=, 17 ()
E“(H"") and EQ(H&’)’respectively, represent the

scattered y-directed electric (magnetic)field and
associated space harmonic amplitudes resulting from a
TE(TM)-polarized incident plane wave E{(H{’). Wave-

number and wavelength are related by k=2w/) and scatter
angles em are given by sinem = gin6® + mA/d.

Complex amplitudes Ui can be expressed in terms of
integrals whose kernels involve the unknown induced

surface current distribution K. These integrals re-
duce to closed form expressions on assuming

w —iZﬂnxo/d
k=g, 191=F%F de , (2)
P n=-« n
where for TE-polarization
1 i . _
L cos0 1k(x051n6 zocose)

K= 2(5 - e
P U 2%
[l+(dzo/dxo) ]
and for TM-polarization
—ik(xosine - zocose)

K'"= -2 e .
P

Ké is a modified form and Kﬁ‘ the actual form of the
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physical optics approximation of the current densities¥

F¢ is a Fourier series whose fundamental period equals
the spatial period of the metal scatterer. Space har-
monic amplitudes then can be shown to take the form

. _ cos® £ min+l .
Em - cosem I (D Jm+n(alm)cn (32)
for TE-polarization and
P
® mnt+l m
P _ _m o P
B I (-1) [l+(m+n)a ] Jm+n( lm)cn (3b)
1m
for TM-polarization. J are Bessel functions of

min
order mtn and

o= 27 (h/2) [cose + cosem], P, = Zw(h/k)tanem. (3¢)

The Fourier coefficients Cg in (3) are found by

imagining the metal scatterer to be replaced by k%,
This current must then radiate a field into the lower
half-space (z<zo). The incident field is allowed to

penetrate this region so that a net zero field results.
This means that the zero order space harmonic cancels
the incident wave (they travel in the same direction)
and that all higher order space harmonics are zero,
i.e.,

1+ 08 =0 for m0, U =0 for m0 . (4)
[s 1 m
Using equations (2), (4) and integral expressions for
the field radiated by k¥ into region z<z _, a linear

system of equations for the Fourier coefficients is
obtained. This linear system is amenable to efficient
computer evaluation; its matrix elements are Bessel
functions of complex arguments.

Numerical Results, Accuracy Checks, Program Limitations

A computer program for numerical evaluation of the
linear system under discussion has been constructed.
Program outputs have included the induced surface cur-
rent densities, the amplitudes and phases of the
scattered space harmonics and accuracy checks based on
conservation of power and reciprocity. Numerical data
was acquired for surface profiles (1) d/x = 2.5,

h/x = 0.375 and (2) d4/x = 1.3, h/) = 0.1333, which
approximately describe surfaces of practical interest.

Figs. 2 and 3 show the power Pm of the (propaga-

ting) space harmonics of surface profile 2 plotted vs.
8 for TE- and TM-polarization of the incident plane
wave, respectively. Pm denotes the power transmitted

th . .
by the m~ space harmonic through unit area of planes
z = constant assuming the incident power per unit area
is unity. Observe that in the range of large incidence

angles (6>600) the specular reflection coefficient (PO)

is significantly greater for TE- than for TM-polariza-—
tion. The curves show pronounced Rayleigh-Wood type
anomalies indicated on the figures by small arrows. As
expected, S-type anomalies (TM case) are stronger than
P-type anomalies (TE case).

Conservation of power and reciprocity are used to
check the accuracy of numerical values. The former
requires that

P =1, P

- g2
b2 " }Um} cosd_/cost, )

*Integral equations, obtained on use of the boundary
condition Etan=0 at the metal surface, yield when eval-

ualed in the vicinity of the singularities of their
kernels these expressions for Kg.
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with the summation extending over all propagating spec-
tral orders. Reciprocity stipulates that

(Ui)acosei = (Ui)bcossi , (6)

. . . . a
where unity amplitude waves incident from directioms ©

and eb produce space harmonics of order m scattered in
a,b_ _eb,a

m
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Fig. 2. Powers Pm of propagating space harmonics vs.
incidence angle 6. Spectral orders: m = +1,
0,-1,-2.
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Fig. 3. Powers Pm of propagating space harmonics vs.

incidence angle 8.
-1,-2; (b) m =

Spectral orders: (a) m =
0,+1.

In Table 1, the relative power errors,
€ = (%Pm— 1)+100, are listed as functions of 6 for pro-

file 1. The table shows that the relative power errors
are generally in the order of 1% or less. Accuracy was



found to fall for incidence angles near Rayleigh-Wood
type anomalies. For surface profile 2, accuracy was

very high with |efm10_4%.

o

[ 0 10 20 30 40 50 60 70 80 85

e”(Z) |0.05{-0.12} 0.19] 0.24|~1.16} 0.41f 0.58| 0.57} 0.17; 0.06

€“*(%) |0.44}-1.84(-0.31] 0.02}~6.32}~2.66[-0.83| 0.04] 0.17} 0.38

Table 1. Accuracy check (power criterion) on numer-

ical results for d/x=2.5, h/Ax=0.375 &~ and

e”” corresponds to TE- and TM-polarizations,
respectively.

In Table 2, the results of a reciprocity check are
shown for profile 1. In the TE case, relative ampli-
tude errors are generally below 0.5% - larger errors
are due to smaller amplitudes - and phase errors re-—
main below 1%. In the TM case, discrepancies are
appreciably larger.

a b [ b a
] -em 6--9m n

Error(X) ¢‘: - ¢:

A. TE-Polarization

60 47.22 | -4 0.08 0.11
60 16.51 | -3 -0.15 -0.03
60 -3.79 | -2 -0.32 0.00
60 -27.78 | -1 0.04 -0.64
60 -60.00 0 .00 0.00

B. TM-Polarization

60 47.22 | -4 -0.68 ~0.01
60 19.51 | -3 0.13 -0.42
60 ~3.79 | -2 0.47 -0.07
60 -27.78 | -1 0.85 0.94
60 ~60.00 0 0.00 0.00
qa a_;.qib b
Ertor(Z)=’Um[ cose_ ]Um[ cos8
5 5 x 100
]Uql cosd
m n

q\,:’b: arg(Ug)a’b; all angles in degrees.,

Table 2. Accuracy check (reciprocity criterion) on
complex amplitudes of space harmonics for
d/x=2.5, h/x=0.375.

o WS IS
AR e el et [ e
0.2 0.1 | 60 0.02 0.12 0.26 1.50
(a) 0.4 | 0.2 0 1.64 2.26 0.76 1.77
0.4 | 0.2 | 60 0.10 0.62 1.36 0.84 .
1.9 1 0.25 | 0 0.0 0.04 0.04 0.%6
1
o e P | el T e
{
1.5} 0.1 | 60 | 0.44-10%[0.46-10"[0.69-1072[1.18 :
2.5 0.44°10 710.21°10 " |0.15-10 |0.78 !
3.5 0.40:10 *[0.29°10 °10.33:20 " |1.31 ‘
(b) 1.5 | 0.25 | o[ 1.18-107[0.12 1.77-10°°10.60
2.5 0.30°10 '|1.42.10 >]0.26+10 20.93.10
3.5 0.85-107°]1.62°107°]0.41-10 2|0.42-10 -
1.5 | 0.25 | 60 | 0.82-107°]0.55-10 *|1.72°10 * |0.23 ,
2.5 6.23 Q.27 0.16+10 [0.57 !
[ 3.5 3.07 4.14 0.34°1077[1.16 ‘

Table 3. Comparison of relative power errors: Whitman—
Schwering vs. (a) Tong-Senior and (b) Zaki-
Neureuther.
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Comparison of the numerical accuracy of this new
method (WS) with that of Tong and Senior (TS) and of
Zaki and Neureuther (ZN) are given in Tables 3a and 3b,
respectively. Table 3a was compiled from tables in
reference 6 and Table 3b from the use of the ZN-
computer program. For the d/) values tested, the WS-
program was found to run on the average ~10 times
faster than the ZN-program.

The accuracy of the computed results has been
found to be critically dependent on the depth of the
surface grooves, i.e., on 2h/X. The power and reci-
procity criterion are excellently satisfied at small
2h/3<0.2 and well satisfied up to 2h/A~1.0. No Lim-
itations have been encountered with regard to d/A
values.

Conclusion

A new rigorous approach to the problem of plane
wave scattering from periodic metal surfaces was pre-
sented. Numerical evaluation verified that the TE-
polarized specular (power) reflection coefficient is
significantly larger than the associated TM one, par-
ticularly when 6>60°. Conservation of power and
reciprocity were quite adequately satisfied for h/i
s 0.5, Numerical results were found to be in excellent
agreement with values computed by other methods. The
method has proven to be computationally efficient in
the range of groove depth smaller than one wavelength.
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