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Abstract

scattering by periodic metal sur-

The approach reduces the scatter

linear system whose coefficients
are obtained in closed form. The theory is thus amena-
ble to efficient computer evaluation. Numerical re–
suits have shown that for depth of grooves less than a
wavelength and for unrestricted groove widths reliable

and comparable , if not more accurate, data is obtained
at minimal computational cost.

Introduction

Many of the procedures used to study scattering
from periodic surfaces are based on the original ap–

preach used by Lord Rayleigh in 1878,1 in which a

discrete spectrum of outgoing plane waves is assumed

for the scattered field. Difficulties occur in apply-
ing boundary conditions since this form of the
scattered field does not in general apply at the

2,3 only recently, with the availabil-scatter surface.
ity of high speed computers, has the evaluation of

rigorous integral representations of solutions to these

problems become practical and reliable results been

obtained .4-8 In this study, a new theoretical approach

to the problem of scattering by periodically corrugated
metal surfaces is presented. The induced current dis-

tribution on the perfectly conducting surface is
assumed to be a Fourier series (whose fundamental

spatial period is equal to the width of the surface
grooves - Floquet’s theorem) multiplied by the physical
optics current density or a suitably chosen modifica-
tion of it. The unknown coefficients of the Fourier

series are determined from the condition that the total
field below the scatterer be zero. This method con–
verts the solution of the scatter problem, for many

periodic configuration, to the solution of a linear
system whose matrix coefficients reduce to closed form
expressions in terms of well–known functions. The
unknown Fourier coefficients become amenable to effi-

cient computer evaluation after appropriate truncation
of the linear system. With the known induced current
distribution, closed form expressions are then obtained
for the scattered field above the metal surface. By
increasing the order of the system evaluated, it should
in principle be possible to improve the accuracy of the

apprOach without limit (though this has not yet been
proven).

Experimentally, it has been established that TM–
polarization is superior to TE-polarization in mini–

mizing false guidance of microwave scanning beam
landing systems by substantially reducing specular
reflection from large (periodic) metal structures near
runways.9 TE(TM)–polarization is characterized by an
electric (magnetic) field directed parallel to the

surface grooves. Numerical results confirm this exper–
imental evidence, particularly in the practical range
of low incidence angles (near grazing).

Conservation of power and reciprocity are used to
numerically test the accuracy of this new theory. Its
dependence on surface groove depth and width is dis-

cussed. Finally, comparisons are made of data

obtained by this method with results based on the

numerical schemes of Tong and Senior, 6

Neureuther. 4 * 5
and of Zaki and

Scatter Problem and Solution

A uniform plane wave (with suppressed time de-

pendence exp(iut) is incident at an angle 6 upon a
metal sinusoidally varying surface defined by
z = h sin(2mxo/d), -CO ~xo, y < cc (see Fig. 1).
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Fig. 1. Sinusoidal metal surface illuminated by plane

wave; coordinates and geometry of scatter

problem,

the periodic nature of the surface, the scatterDue to

field in the region Z>Z can be represented as a dis-
0

crete spectrum of propagating and evanescent plane

waves (space harmonics):
-ik(x sinen+z Cosen)

Uq= ~ Uq e
m.-. m

, lJq=E’,H.> (1)

E’(H”) and E~(H~’), respectively, represent the

scattered y–directed electric (magnetic)field and
associated space harmonic amplitude resulting from a

TE(TM)–polarized incident plane wave E~(H~’). Wave-

number and wavelength are related by k=2r/k and scatter
angles em are given by sine = sine + mA/d.

m

Complex amplitudes U: can be expressed in terms of

integrals whose kernels involve the unknown induced

surface current distribution Kq. These integrals re-

duce to closed form expressions on assuming
–i2nnxo/d -

~q . #Fq Fq=~Cqe
P’

,n.-,x n (2)

where for TE-polarization

% -ik(xosine - ZOCOS6)
K;= 2(:)

coa 6

[l+(dzo/dxo)2j+ e

and for TM-polarization
-ik(xosine –

K;’= –2 e

K{ is a modified form and

Zocose)

.

K “ the actual form of the
P
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physical optics approximation of the current densities~

Fq is a Fourier series whose fundamental period equals

the spatial period of the metal scatterer. Space har-
monic amplitudes then can be shown to take the form

Cose
E’=~

m
&( -l)ti+lJm% (alm)c~ (3a)

Ill
for XE-polarization and

Hi’ = mj_m(-l)*+l [I+(m+n)$m] Jti(@lm)C~’ (3b)

for TM–polarization. Jti are Bessel functions of

order m+n and

aim= 2n(h/k)[cose + Cosem], p = 2m(h/A)tan6
m m“

(3C)

The Fourier coefficients C: in (3) are found by

imagining the metal scatterer to be replaced by Kq.
This current must then radiate a field into the lower

half-space (z<zO). The incident field is allowed to

penetrate this region so that a net zero field results.

This means that the zero order space harmonic cancels

the incident wave (they travel in the same direction)
and that all higher order space harmonics are zero,

i.e.,

Uq + u: = O for m=O, Uq = O for m+O . (4)

Using ~quations (2), (4) and ~ntegral expressions for

the field radiated by Kq into region Z<zo, a linear

system of equations for the Fourier coefficients is
obtained. This linear system is amenable to efficient
computer evaluation; its matrix elements are Bessel

functions of complex arguments.

Numerical Results, Accuracy Checks, Program Limitations

A computer program for numerical evaluation of the

linear system under discussion has been constructed.
Program outputs have included the induced surface cur–
rent densities, the amplitudes and phases of the
scattered space harmonics and accuracy checks based on
conservation of power and reciprocity. Numerical data
was acquired for surface profiles (1) d/A = 2.5,

h/h = 0.375 and (2) dli = 1.3, h/A = 0.1333, which

approximately describe surfaces of practical interest.

Figs. 2 and 3 show the power Pm of the (propaga-

ting) space harmonics of surface profile 2 plotted vs.

8 for TE- and TM-polarization of the incident plane

wave, respectively, Pm denotes the power transmitted

by the m
th

space harmonic through unit area of planes
z = constant assuming the incident power per unit area

is unity. Observe that in the range of large incidence

angles (f3>60°) the specular reflection coefficient (Po)

is significantly greater for TE– than for TM-polariza–
Cion. The curves show pronounced Rayleigh-Wood type
anomalies indicated on the figures by small arrows. As

expected, S-type anomalies (TM case) are stronger than
P–type anomalies (TE case).

Conservation of power and reciprocity are used to

check the accuracy of numerical values. The former

requires that

\uq/2cosem/cose,zPm=l, Pm=m
m (5)

*Integral equations, obtained on use of the boundary
condition Etan=O at the metal surface, yield when eval-

ualed in the vicinity of the singularities of their
kernels these expressions for Kq.

P

with the summation extending over all propagating spec-
tral orders. Reciprocity stipulates that

(U:)acose:= (U:)bcose: , (6)

where unity amplitude waves incident from directions ‘da

and eb produce space harmonics of order m scattered in

a,b_ b a
directions ~m – -e ‘ .

Fig, 2, Powers Pm of propagating space harmonics vs.

incidence angle 6. Spectral orders: m = +1,

0,-1,-2.
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Fig. 3. Powers Pm of propagating space harmonics vs.

incidence angle 8. Spectral orders: (a) m =
-1,-2; (b) m= 0,+1.

In Table 1, the relative power errors,
~ = (~pm.- 1).100, are listed as functions of 6 for pro-

file 1. The table shows that the relative power errors
are generally in the order of 1% or less. Accuracy was
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found to fall for incidence angles near Rayleigh-Wood

type anomalies. For surface profile 2, accuracy was

very high with lElm10–4%.

8° 0 10 20 30 40 50 60 70 80 85

c’(z) 0.05 -0.12 0.19 0.24 -1.16 0.41 0.58 0.57 0.17 0.06

e--(%) 0.44 -1.84 -0.31 0.02 -6.32 -2.66 -0.83 0.04 0.17 0.38

Table 1. Accuracy check (power criterion) on numer-

ical results for d/i=2.5, h/i=O.375 c’ and

E“ corresponds to TE- and ‘IM-polarizations,
respectively.

In Table 2, the results of

shown for profile 1. In the TE

tude errors are generally below

are due to smaller amplitudes -
main below 1%. In the TM case,
appreciably larger.

a reciprocity check are

case, relative ampli-

0.5% - larger errors
and phase errors re-
discrepancies are

8=-6: eb--e~ m Error(%) .$; - b:

A. TE-Polarization

60 47.22 -4 I 0.08 0.11

w
B. TM-Polarization

m
60 -60.00 0 0.00 0.00

l~qlacose~-lu~lbcoseb ~loo
Error(%)=- m

lu~lb.ose~

a,b
4m

- ~rg(uq)a,b
m ; all angles in degrees,

Table 2. Accuracy check (reciprocity criterion) on

complex amplitudes of space harmonics for
d/i=2.5, h/h=O.375.

(a)

(b)

dlk hli 6°
l.-! m 1.--1 /.”1 Ts /.”-1 ;

0.2 0.1 60 0.02 0.12 0.26 1.50 ;

0.4 0.2 0 1.64 2.26 0.76 1.77

0.4 0.2 60 0.10 0.62 1.36 0.84 ;

1.9 0.25 0 0.0 0.04 0.04 I 0.26 —

Idll Ih’’leol 1.-171s-/ 11s-, 7,.--, I, 1 ! I [

1.5 0.1 60 0.44 .10-4 0.46 .10-4 0.69.10-2 1.18

2.5 0.44.1

3.5 0.40c10-410.29<

10-410 .21.10-410.15.10-3 ~—.
.1o- ‘ 0.33 .10-3 1.31

I
1.5 0.25 0 1.18 -10-2 0.12 1.77 -lo-~ 0.60

.10- ‘ 0.26 .10-Z o.93.10-~’I2.5 0.30 .10-4 1.42

3.5 I 0.85.10-b ]l.62 .10- “ 0.41 -10-2 0.42.10-1I

I
1.5 0.25 60 0.82 .10-3 0,55 -10-’ 1.72 -10-L 0.23 :

,---- 6.16 .10-’ 0.57 1

H--t-+=;:: ,0-3410-,,.,6.[

Table 3. Comparison of relative power errors: Whitman–

Schwering vs. (a) Tong-Senior and (b) Zaki-
Neureuther.

Comparison of the numerical accuracy of this new

method (WS) with that of Tong and Senior (TS) and of

Zaki and Neureuther (ZN) are given in Tables 3a and 3b,

respectively. Table 3a was compiled from tables in

reference 6 and Table 3b from the use of the ZN–

computer program. For the d]i valuee tested, the WS-

program was found to run on the average w1O times
faster than the ZN–program.

The accuracy of the computed results has been
found to be critically dependent on the depth of the

surface grooves, i.e., on 2h/i. The power and reci–

procity criterion are excellently satisfied at small

2h/1<0.2 and well satisfied up to 2h/1-l.O. No lim-
itations have been encountered with regard to d/A

values.

Conclusion

A new rigorous approach to the problem of plane

wave scattering from periodic metal surfaces was pre-
sented. Numerical evaluation verified that the TE–
polarized specular (power) reflection coefficient is

significantly larger than the associated TM one, par-

ticularly when ~>60°. Conservation of power and
reciprocity were quite adequately satisfied for hii

s 0.5. Numerical results were found to be in excellent
agreement with values computed by other methods. The

method has proven to be computationally efficient in

the range of groove depth smaller than one wavelength.
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